MOVES IV. Modelling the influence of stellar XUV-flux, cosmic rays, and stellar energetic particles on the atmospheric composition of the hot Jupiter HD 189733b

Jump to navigationJump to search Get Cheap Robux

Patrick Barth, Christiane Helling, Eva E. Stüeken, Vincent Bourrier, Nathan Mayne, Paul B. Rimmer, Moira Jardine, Aline A. Vidotto, Peter J. Wheatley, Rim Fares

Hot Jupiters provide valuable natural laboratories for studying potential contributions of high-energy radiation to prebiotic synthesis in the atmospheres of exoplanets. In this fourth paper of the MOVES (Multiwavelength Observations of an eVaporating Exoplanet and its Star) programme, we study the effect of different types of high-energy radiation on the production of organic and prebiotic molecules in the atmosphere of the hot Jupiter HD 189733b. Our model combines X-ray and UV observations from the MOVES programme and 3D climate simulations from the 3D Met Office Unified Model to simulate the atmospheric composition and kinetic chemistry with the STAND2019 network. Also, the effects of galactic cosmic rays and stellar energetic particles are included. We find that the differences in the radiation field between the irradiated dayside and the shadowed nightside lead to stronger changes in the chemical abundances than the variability of the host star's XUV emission. We identify ammonium (NH4+) and oxonium (H3O+) as fingerprint ions for the ionization of the atmosphere by both galactic cosmic rays and stellar particles. All considered types of high-energy radiation have an enhancing effect on the abundance of key organic molecules such as hydrogen cyanide (HCN), formaldehyde (CH2O), and ethylene (C2H4). The latter two are intermediates in the production pathway of the amino acid glycine (C2H5NO2) and abundant enough to be potentially detectable by JWST.

Sponsor: Summer $10 Off Coupon from! Take $10 OFF on 2 items by using Coupon Code: 10SUMMER23 at check out! Limited to one per customer and this coupon is valid through August 22nd.

Get Cheap Software